skip to main content


Search for: All records

Creators/Authors contains: "Viñas, A. F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The quasi-steady states of collisionless plasmas in space (e.g., in the solar wind and planetary environments) are governed by the interactions of charged particles with wave fluctuations. These interactions are responsible not only for the dissipation of plasma waves but also for their excitation. The present analysis focuses on two instabilities, mirror and electromagnetic ion cyclotron instabilities, associated with the same proton temperature anisotropyT>T(where ⊥, ∥ are directions defined with respect to the local magnetic field vector). Theories relying on standard Maxwellian models fail to link these two instabilities (i.e., predicted thresholds) to the proton quasi-stable anisotropies measured in situ in a completely satisfactory manner. Here we revisit these instabilities by modeling protons with the generalized bi-Kappa (bi-κpower-law) distribution, and by a comparative analysis of a 2D hybrid simulation with the velocity-moment-based quasi-linear (QL) theory. It is shown that the two methods feature qualitative and, even to some extent, quantitative agreement. The reduced QL analysis based upon the assumption of a time-dependent bi-Kappa model thus becomes a valuable theoretical approach that can be incorporated into the present studies of solar wind dynamics.

     
    more » « less
  2. null (Ed.)